Глава 4
Вегетативные механизмы боли

Периферическая организация вегетативных процессов

Еще не так давно в медицине и биологии принято было считать, что нервный аппарат человека и животных состоит из двух самостоятельных, почти независимых друг от друга систем — анимальной и вегетативной.

Начало этому учению положил в конце XVIII века французский врач и физиолог Мари Франсуа Биша. Все функции организма он разделил на анимальные, свойственные только животным, и вегетативные — общие как животным, так и растениям.

Анимальные регулируются центральной нервной системой, вегетативные — специальным нервным аппаратом, состоящим из нервных узлов (ганглиев). Каждый узел — это нечто вроде маленького мозга, который может, независимо от центральной нервной системы, выполнять все ее функции.

Ощущение, движение, речь составляют, по Биша, группу анимальных функций; питание, рост, размножение — группу вегетативных. Отсюда и нервная система, регулирующая функции животной жизни, получила название анимальной, а нервная система, регулирующая функции растительной жизни,— вегетативной. В течение многих лет вегетативную нервную систему рассматривали как автономное, независимое от головного и, отчасти, спинного мозга нервное хозяйство, управляющее явлениями «растительной» жизни. К последним относили кровообращение, дыхание, пищеварение, мочеотделение, другими словами: все непроизвольные процессы, не подчиняющиеся воле и сознанию (рис. 15).

Рис. 15. Схема строения вегетативной нервной системы (по К. М. Быкову). С левой стороны симпатическая, с правой — парасимпатическая иннервация

1 — пограничный ствол симпатического нерва; 2 — поясничные сегменты; 3 — грудные сегменты; 4 — верхний шейный узел; 5 — звездчатый шейный узел; 6 — глазодвигательный нерв; 7 — барабанная струна; 8 — блуждающий нерв; 9 — тазовый нерв

Перелом наступил в начале XX столетия, а в наше время вся система взглядов Биша и его многочисленных последователей представляет уже исторический интерес. Стройное учение о вегетативной нервной системе создано усилиями многих блестящих исследователей как отечественных, так и зарубежных.

Огромную роль сыграла в этом отношении русская физиологическая школа. И. М. Сеченов, И. П. Павлов, Л. А. Орбели, А. Д. Сперанский, Л. С. Штерн, их ученики и сотрудники внесли много нового и оригинального в наши представления о структуре и функциях вегетативной нервной системы. Исследования английских ученых Ленгли и Гаскелла, немецких — Шиффа и Мюллера, французских — Биша и Браше, американских — Кеннона и Гелльгорна, швейцарских — Гесса и Моннье, румынского — Даниэлопуло и многих, многих других позволили расшифровать необычайно сложные механизмы вегетативных реакций.

И, прежде всего, оказалось, что «растительные» функции в такой же степени подчинены головному мозгу, как и «животные». Об этом писал еще в 1875 г. выдающийся русский физиолог Василий Яковлевич Данилевский. Раздражая электрическим током лобные доли мозга, он вызывал изменение деятельности сердца, нарушение ритма дыхания. Интереснейшими работами казанской физиологической школы, возглавляемой Н. А. Миславским, было окончательно установлено, что в продолговатом мозгу находятся центры, регулирующие дыхание и кровообращение. За каких-нибудь два-три десятка лет исследования современных физиологов полностью перестроили представление об автономности вегетативной нервной системы и доказали, что она является неотъемлемой составной частью единого, целостного нервного аппарата.

Л. А. Орбели создал и в течение ряда лет развивал теорию адаптационно-трофической (т.е. приспособительной) роли симпатического отдела вегетативной нервной системы в организме. Он считал, что последняя, изменяя обмен веществ, тем самым настраивает орган, приспособляет его к определенной деятельности. Такое влияние симпатическая нервная система оказывает на все органы и ткани, в том числе и на центральную нервную систему, включая ее высшие отделы.

Среди советских клиницистов, изучавших состояние вегетативной нервной системы при различных нарушениях деятельности организма, следует назвать имена Г. И. Маркелова, И. И. Русецкого, Н. И. Гращенкова. Им мы обязаны многими интересными исследованиями, посвященными вегетативным расстройствам.

Строение вегетативной нервной системы отличается некоторыми особенностями. Она имеет свои «высшие законодательные» центры, расположенные в головном и спинном мозгу, подчиненные центры «районного масштаба» — периферические узлы или ганглии — и мощную сеть нервных волокон, оплетающих и пронизывающих буквально все органы и ткани. Как правило, вегетативные волокна по пути от нервных центров к иннервируемым органам прерываются в определенных нервных узлах.

Поэтому различают волокна предузловые — от центра до нервного узла (преганглионарные) и послеузловые постганглионарные) — от узла до цели. В этом различие между вегетативным нервным волокном и двигательным, которое, как известно, без перерыва следует от нервного центра до исполнительного органа.

Вегетативная нервная система подразделяется на два больших отдела — симпатический и парасимпатический. Большинство органов и тканей снабжено как симпатическими, так и парасимпатическими волокнами. Эта двойная иннервация имеет исключительно важное значение для жизнедеятельности нашего организма. Она обеспечивает тонкую и точную регуляцию функций. Но в то время как симпатические волокна проникают во все органы, парасимпатические разветвляются лишь в некоторых.

Влияние симпатических и парасимпатических нервов на физиологические процессы неодинаково, иногда даже противоположно. В одних случаях симпатический отдел вегетативной нервной системы возбуждает деятельность клеток, тканей, органов, а парасимпатический тормозит ее, в других — имеют место обратные соотношения.

Господствовавшие в XVIII в. представления о функции симпатической нервной системы как о регуляторе деятельности органов, обеспечивающем «симпатии и согласие органов» (отсюда и название этой части нервной системы), давно уже утратили свое значение и заменены более точными анатомо-экспериментальными данными науки.

При возбуждении симпатических нервов учащается ритм сердечных сокращений, суживаются сосуды, повышается кровяное давление, пульс становится быстрым и напряженным, усиливается обмен веществ, улучшается питание тканей. В то же время гладкая мускулатура желудка и кишок расслабляется и венечные сосуды, снабжающие сердце кровью, расширяются. Симпатические нервы расширяют зрачок и сокращают мышцы волосяных мешочков, вследствие чего волосы взъерошиваются (как говорят, «становятся дыбом», ощетиниваются). Симпатические импульсы вызывают отделение густой, вязкой слюны и в то же время уменьшают секрецию желудочного сока. Под влиянием симпатических нервов утомленная, едва сокращающаяся мышца начинает работать энергичнее, бодрее. В ней изменяются химические процессы, повышается обмен веществ, увеличивается образование тепла.

Многочисленные рецепторы нашего организма, в том числе кожные рецепторы прикосновения, давления, боли, тепла и холода, иннервируются волокнами симпатической нервной системы. Она снабжает ими спинной и головной мозг, вплоть до его высших отделов.

Несколько иную роль играет в организме парасимпатическая нервная система. Действие ее во многих отношениях противоположно действию симпатической. При возбуждении парасимпатических волокон ритм сердечных сокращений замедляется, сосуды расширяются, кровяное давление падает и одновременно суживаются венечные сосуды, что ведет к ухудшению кровоснабжения сердца. Импульсы, идущие по парасимпатическим нервам, вызывают отделение жидкой, обильной слюны, увеличение секреции желудочного и кишечного сока, усиление движений желудка и кишок, отложение резервов в организме. При возбуждении парасимпатических волокон зрачок резко суживается, увеличивается отделение слез, нарастает количество мочи.

Обычно принято считать, что в нормальном организме симпатическая нервная система способствует повышению общей активности организма, а парасимпатическая — восстановлению затрат, связанных с его деятельностью. Однако далеко не всегда симпатический и парасимпатический отделы нервной системы действуют противоположно. Вряд ли в организме вообще возможен столь резко выраженный антагонизм. Понятие об антагонизме, т.е. о «противоборстве», «противодействии» между различными отделами вегетативной нервной системы уже давно подлежит пересмотру. Физиология целостного организма может говорить об относительном антагонизме, вернее: о единстве противоположностей, о едином механизме противоположно действующих факторов. Между симпатическим и парасимпатическим отделами вегетативной нервной системы существуют анатомические и физиологические связи. Они способствуют согласованной совместной деятельности и взаимодействию различных частей вегетативной системы. Но, по-видимому, нередко одни и те же процессы в организме возникают (или прекращаются) под влиянием симпатических нервов и прекращаются (либо возникают) под влиянием парасимпатических.

Для деятельности вегетативной нервной системы огромное значение имеют биологически активные вещества — передатчики нервного возбуждения. Ацетилхолин и норадреналин — два важнейших химических соединения в организме человека и животных — осуществляют передачу возбуждения в синапсах вегетативной нервной системы как в центрах, так и на периферии. Еще до сих пор многие исследователи считают, что передатчиком нервных импульсов в парасимпатической системе является ацетилхолин, а в симпатической — симпатии, представляющий сочетание адреналина и продуктов его превращения. Сравнительно недавно было доказано, что симпатин идентичен норадреналину — биохимическому предшественнику адреналина. Выяснилось также, что существуют симпатические волокна, выделяющие при возбуждении ацетилхолин, и парасимпатические, образующие в процессе своей деятельности норадреналин. Поэтому вегетативные нервные волокна делят на две группы — холинергические с ацетилхолиновой передачей и адренергические, осуществляющие свою деятельность путем выделения норадреналина.

Вегетативная нервная система принимает самое деятельное участие в удивительной, тончайшей игре механизмов, регулирующих физиологические процессы, возбуждающих одни клетки и тормозящих другие.

Реакции вегетативной нервной системы имеют важнейшее значение для живых существ, начиная от доклеточных элементов и кончая целостным организмом. Голод и насыщение, аппетит и жажда, тошнота и рвота, радость, гнев, страх — все это в той или иной степени связано с состоянием и деятельностью вегетативной нервной системы.

В последние годы появился ряд исследований, посвященных болевой чувствительности вегетативных узлов и волокон. Во время операций на людях было установлено, что шейная симпатическая цепочка чрезвычайно чувствительна к механическим и электрическим раздражениям. Прикосновение к ней скальпелем или пинцетом вызывает резкое, подчас мучительное болевое ощущение. Пациент отмечает при этом боли в различных органах, иногда даже расположенных довольно далеко от места прикосновения инструмента. Так, например, раздражение верхнего шейного узла симпатической нервной системы вызывает сильные боли в зубах, в нижней челюсти и иногда в ухе. Раздражение звездчатого узла сопровождается тяжелыми болями в плечевом поясе и в спине. Лериш утверждает, что распределение вегетативных волокон левого звездчатого узла полностью совпадает с распространением болей при грудной жабе. Он наблюдал возникновение сильнейших болей в области сердца при раздражении этого узла иглой или электрическим током.

Все это привело к мысли, что болевые раздражения могут передаваться в центральную нервную систему по симпатическим или даже парасимпатическим волокнам. Волокна эти принадлежат к наиболее тонким, типа С, и имеют диаметр 2—2,5 мк. Возбуждение идет по ним медленно и, дойдя до нервных центров, вызывает тяжелую, расплывчатую боль. Хотя в литературе нет единства взглядов по этому вопросу, все же можно думать, что чувствительность внутренних органов связана с вегетативной нервной системой. Это тем более вероятно, что еще в 1896 г. выдающийся русский гистолог А. С. Догель описал в ней чувствительные нейроны. К сожалению, его работы были забыты, и лишь в недавнее время венгерский ученый Кисс подтвердил, что в симпатических цепочках существуют чувствительные волокна.

Для деятельности периферических элементов вегетативной нервной системы характерны особые виды рефлексов, так называемые аксон-рефлексы. В отличие от истинных рефлексов, аксон-рефлексы осуществляются без непосредственного участия нервных центров. Возбуждение, возникшее в периферическом рецепторе, не достигает нервной клетки, а переходит в точке разветвления нервного волокна с одной ветви на другую, вызывая таким образом тот или иной эффект. Реакции подобного рода наблюдали многие ученые (впервые — русские исследователи Бабухин и Соковнин), но описал их английский ученый Ленгли в конце XIX в. Ему и принадлежит название «аксон-рефлекс». Реакции эти примитивны, с развитием нервной системы они играют все меньшую и меньшую роль. Примером аксон-рефлекса может служить покраснение кожи при ее трении. Определенную роль в возникновении аксон-рефлекторных реакций играют образующиеся в нервных окончаниях химические вещества типа ацетилхолина или гистамина.

Вегетативная нервная система необычайно чутко реагирует на все раздражения, поступающие из внешней и внутренней среды, и обеспечивает приспособление организма к постоянно меняющимся внешним и отчасти внутренним условиям.

Время дня, время года, атмосферное давление, погода, температура воздуха оказывают на нее свое закономерное влияние. Исключительное значение для реакций, осуществляемых всем вегетативным аппаратом, имеют внешние воздействия на органы чувств (свет, звук, запах).

Существует немало химических соединений, усиливающих и ослабляющих деятельность вегетативной нервной системы. Современная фармакологическая промышленность изготовляет их десятками. Симпатический отдел вегетативной нервной системы возбуждается при введении в кровь синтетических препаратов адреналина и норадреналина. В организме адреналин постоянно поступает из надпочечников в кровь и стимулирует симпатические центры и узлы. Подобным же образом действуют и многие другие, искусственно полученные, так называемые симпатотропные (т.е. возбуждающие симпатический отдел вегетативной системы) вещества.

К ним относятся симпатол, синефрин, неосинефрин (вазотон, мезатон), фенамин, эфедрин, тирамин, а также соли кальция и т.д.

Но попробуем ввести под кожу или в кровь незначительное количество ацетилхолина. Почти тотчас же после введения кровяное давление начинает снижаться, деятельность сердца резко замедляется, сосуды расширяются, зрачки суживаются. У человека усиливается потоотделение, начинается тошнота, нередко возникают спазмы кишечника. Введенный в кровь препарат ацетилхолина вызывает множество парасимпатических реакций: действует непосредственно на ткани и клетки, а кроме того возбуждает парасимпатические элементы вегетативной нервной системы, в первую очередь блуждающий нерв. Но действие ацетилхолина непродолжительно, так как быстро расщепляется ферментной системой холинэстераз и прекращает свое действие. Поэтому вещества, близкие по своему действию к ацетилхолину, но не расщепляющиеся под влиянием холинэстераз, как, например, карбаминохолин, мускарин, пилокарпин, ареколин, соли калия и т.д., оказывают более длительное действие на физиологические процессы. Можно и иначе усилить деятельность парасимпатической системы. Для этого достаточно ввести в кровь вещества, подавляющие холинэстеразы (эзерин, прозерин). Ацетилхолин перестает расщепляться, и вследствие этого его действие на органы и ткани расширяется и увеличивается.

До сих пор мы говорили о веществах, возбуждающих, усиливающих активность различных отделов вегетативной нервной системы. Но нередко и физиологу в опытах на животных, и клиницисту у постели больного необходимо ослабить, подавить деятельность симпатических и парасимпатических элементов.

Здесь на помощь ему приходит целый ассортимент фармакологических препаратов, обладающих адрено- и холинолитическими свойствами (от греческого слова «лизис» — избавление, освобождение). Вещества эти действуют в организме по-разному. Одни разрушают симпатические ж парасимпатические медиаторы, другие блокируют рецепторы и эффекторы в тканях и органах, третьи препятствуют передаче нервного возбуждения в синапсах периферического и центрального нервного аппарата.

Многие химические соединения действуют только на периферии. Гемато-энцефалический барьер не пропускает их в головной и спинной мозг. Некоторые же, проникая через барьер в нервные центры, обладают преимущественно центральным действием.

Среди адренолитиков наибольшим вниманием исследователей пользуются препараты, полученные из растения спорыньи (маточных рожков). Уже давно известно, что они способны устранять или изменять действие адреналина на ряд органов и физиологических систем. Препараты спорыньи — эрготамин, дигидроэрготамин, эрготоксин — с успехом применяются в клинической практике для ослабления симпатических реакций.

Список адренолитических препаратов велик, одно перечисление их может занять целую страницу. Упомянем только иохимбин, дибенамин, дибензилин, симпатолитин, некоторые хорошо известные физиологам номерные препараты (833F и 933F и др.) Для снятия симпатических эффектов, вызванных перевозбуждением вегетативных центров, нередко используют аминазин, который, по-видимому, наряду с другими свойствами, способен блокировать адренергические элементы ретикулярной формации головного мозга.

Ночная красавка[12], сочетавшая в своем латинском названии женскую красоту (Belladonna) и имя старшей из трех мойр греческой мифологии, прерывающей нить жизни (Atropos), вошла в историю науки как источник необычайно активного и широко распространенного холинолитического препарата — атропина. После воздействия атропина все биохимические системы теряют чувствительность к ацетилхолину, карбаминохолину, пилокарпину и другим парасимпатотропным веществам. Атропин является чем-то вроде эталона для других холинергических соединений (амизила, дифацила, пентафена и др.), обладающих как центральными, так и периферическими свойствами. Поэтому и говорят обычно об атропиноподобных свойствах того или другого, полученного в природных условиях или синтезированного в лаборатории холинолитического препарата.

И еще об одной особенности вегетативной нервной системы следует сказать несколько слов. Деятельность ее имеет выраженный циклический, фазовый характер. Повышение активности одного отдела, например симпатического, сменяется усилением другого — парасимпатического (или наоборот). В ночные и утренние часы обычно преобладают парасимпатические реакции, в дневные и вечерние — симпатические. Исследования нашей лаборатории показали, что ночью в несколько раз уменьшается образование в организме адреналина и норадреналина, а в дневные часы оно, как правило, нарастает. Активность различных отделов вегетативной нервной системы фазово колеблется в зимние и летние месяцы, во время работы и отдыха, при покое и волнениях, при переезде из одной местности в другую и т.д.

Центральная организация вегетативных процессов

Уже давно прошло то время, когда считалось, что в центральной нервной системе имеется два-три ограниченных участка, регулирующих все вегетативные процессы. Оказалось, что их гораздо больше и расположены они в разных отделах спинного и головного мозга.

Средоточием вегетативной жизни организма является сравнительно небольшая территория нервной ткани у основания мозга, получившая название диэнцефальной области. Часть этой области — гипоталамус, или подбугорье,— имеет особо важное значение для состояния и деятельности вегетативной нервной системы. Ее периферические отделы четко и бесперебойно выполняют директивы, поступающие из гипоталамуса.

И вот для того, чтобы понять, каким образом возникают и развиваются вегетативные реакции, необходимо разобраться в сложной мозаике нервных центров. В первую очередь гипоталамических.

Итак, гипоталамус расположен под зрительными буграми. Отсюда и русское название «подбугорье». На тонкой ножке к нему как бы подвешен гипофиз — мозговой придаток, сложнейшая фабрика и одновременно резервуар огромного числа гормонов, вырабатываемых как его собственными железистыми клетками, так и особыми нейросекреторными клетками гипоталамуса. Гипоталамус занимает в мозгу очень небольшое пространство, но это не помешало природе вместить в него целую гроздь клеточных скоплений — нервных ядер, каждое из которых играет важнейшую роль в осуществлении симпатических и парасимпатических реакций. Здесь на этом ограниченном плацдарме вегетативной нервной системы сосредоточены наиболее чувствительные, особо тонко реагирующие нервные механизмы, отвечающие за выполнение самых интимных физиологических и биохимических процессов организма.

За последние годы интерес к этой области мозга необычайно возрос. Анатомы, физиологи, фармакологи и клиницисты шаг за шагом открывали загадки подбугорья. В немалой степени этому способствовало развитие учения о ретикулярной формации головного мозга.

Гипоталамус представляет собой сложнейший нервный аппарат, для которого химический состав микросреды его клеток имеет большее значение, чем для любой другой области мозга. Малейшие колебания в составе и свойствах крови, притекающей к ядрам гипоталамуса, или окружающей их тканевой жидкости мгновенно отражаются на всей системе регуляторных приспособлений организма. Достаточно, чтобы на несколько миллиграммов повысился уровень сахара в крови, омывающей чувствительные к содержанию глюкозы рецепторы гипоталамуса, как сразу же приходит в движение вся система «противосахарной» защиты. То же происходит с осмо-, термо-, барорецепторами и т.д. Здесь безошибочно действует принцип обратной связи, имеющий первостепенное значение для регуляции функций.

Именно в гипоталамусе происходит высшая координация деятельности вегетативной нервной системы, содружества желез внутренней секреции и нейро-гуморальных механизмов. Вот почему следует говорить о комплексной вегетативно-гормонально-гуморальной системе регуляции. Постоянство внутренней среды, столь необходимое для «свободной» жизни организма высших животных и человека, в немалой степени зависит от безотказной и слаженной деятельности гипоталамических образований.

Уже не один год для изучения глубинных, подкорковых структур головного мозга физиологи пользуются методом отведения электрических токов через вживленные миниатюрные электроды. Обезьяны, собаки, кошки, кролики, крысы месяцами живут с тонкими проволочками, введенными в глубины мозга. На лентах электроэнцефалографов записываются изменения электрической активности нервных клеток и их ансамблей. Через эти же электроды можно раздражать электрическим током различные отделы мозга или отдельные нейроны. Несколько изменив форму электрода, исследователь имеет возможность ввести в строго локализованные участки центральной нервной системы различные химические вещества, как, например, адреналин или ацетилхолин, различные гормоны, биологически активные вещества, фармакологические препараты. Возникающие при этом физиологические и поведенческие реакции фиксируются с помощью специальной аппаратуры и позволяют выявить локализацию функций в центральной нервной системе.

С помощью микроэлектродной техники открыты мозговые центры, раздражение которых вызывает страдание, удовольствие, влечение, огорчение, радость. Изменяя характер и силу раздражения, можно изменить поведение животного, сделать его агрессивным или боязливым, жестоким или беспомощным, неумеренно прожорливым или упорно отталкивающим пищу.

Крыса, у которой электрод находится в центре удовольствия, научается лапкой нажимать рычаг, замыкающий ток, и часами занимается самораздражением, испытывая при этом какое-то особое наслаждение. Ленинградский физиолог Н. П. Бехтерева широко использует метод вживления тончайших электродов в глубинные структуры мозга человека. В тех случаях, когда в интересах больного для диагностики или лечении необходимо проверить деятельность подкорковых образований, в мозг вживляются золотые проволочки, кончики которых фиксируются в строго намеченных нервных ядрах и могут там находиться в течение длительного времени.

Электрические токи, возникающие в нейронах, записываются и изучаются. Это позволяет с необычайной точностью найти очаг поражения.

Исследования Уолтера, Н. П. Бехтеревой и др. позволили по-новому понять физиологические процессы, протекающие в мозгу человека. Разумеется, возможности подобных экспериментов ограничены. В опытах на животных создаются условия, неповторимые в клинике, но и болезни приводят порой к таким осложнениям, которые не придумает самый изобретательный экспериментатор. Вот почему, сочетая лабораторные опыты с исследованиями на человеке, можно сделать далеко идущие выводы о состоянии нервных структур и наметить пути восстановления их нормальной жизнедеятельности, если они почему-либо нарушены.

А теперь немного фантазии! Быть может, недалек тот день, когда введение микроэлектродов или микроканюль в человеческий мозг сделается рядовой повседневной операцией. Человек будущего окажется в состоянии регулировать деятельность своего мозга, раздражая центры удовольствия и выключая центры страдания током, силу и длительность которого можно будет настраивать на соответствующую шкалу, или химическими веществами, вводимыми собственной рукой в определенные нервные центры.

Кто знает, не удастся ли подобным образом поддерживать в случае нужды длительное бодрствование или вызывать целительный сон, восстанавливать и пробуждать память, раскручивая некую «магнитофонную» ленту в недрах нашего сознания, на которой природа скрупулезно записывает все, что происходит в нашей жизни?

Пусть эта (сегодня фантастическая) картина не покажется читателю нереальной или принципиально неосуществимой. Вспомним, что совсем недавно оживление организма при клинической смерти описывалось лишь в «библиотеке приключений», а стимуляция сердца с помощью электрической батарейки, подшитой к мышцам груди, представлялась предельным дерзанием медицинской науки.

Между тем уже и сегодня в опытах на животных удается раздражением или разрушением определенных ядер гипоталамуса перестраивать физиологические процессы.

В 1956 г. на Международном физиологическом конгрессе в Брюсселе Андерсон показал, что, раздражая через вживленные электроды гипоталамические ядра мозга козы, можно вызвать у животного такую невероятную жажду, что оно без передышки поглощает неимоверное количество воды. Коза на глазах аудитории буквально распухала и все же продолжала безостановочно пить. Как только раздражение прекращалось, вода быстро уходила и животное уменьшалось в объеме.

Можно признать, что нет ни одной вегетативной функции в организме, которая не была бы связана с состоянием подбугорья. Н. И. Гращенков дает далеко не полный список физиологических систем и процессов, связанных с деятельностью ядер гипоталамуса. Он включает в него температуру тела, деятельность сердечно-сосудистой системы, водный и солевой обмен, проницаемость сосудов и тканевых барьеров, белковый, углеводный и жировой обмен, состояние мускулатуры, деятельность всех без исключения желез внутренней секреции, состояние желудочно-кишечного тракта, мочеиспускание, регуляцию сна и бодрствования и т.д. К этому можно добавить, что огромное значение состояние гипоталамуса имеет для эмоциональных и поведенческих реакций. Исследования нашей лаборатории показали, что гипоталамус играет важнейшую роль в сохранении и поддержании постоянства внутренней среды. При расстройстве нормальной, слаженной деятельности клеток гипоталамуса в первую очередь нарушается гомеостаз.

Тонкое гистологическое изучение гипоталамуса показывает, что в нем имеется несколько десятков ядер, регулирующих определенные физиологические функции. Их делят обычно на три группы — передние, средние и задние. Принято считать, что задние ядра реализуют симпатические, передние — парасимпатические реакции. Однако такое деление носит в известной степени условный характер. Симпатические реакции возникают и при раздражении передних ядер, а парасимпатические — задних. Это говорит о том, что сложные физиологические функции, например регулирование кровяного давления или температуры тела, осуществляются в тесном содружестве как передними, так и задними ядрами. Уже сейчас доказано, что в так называемых симпатических центрах разбросано немалое количество холин- и серотонинергических нейронов, а парасимпатические центры содержат адреналин.

В некоторых случаях идеальное взаимодействие между различными ядрами подбугорья нарушается. Нервные центры перестают реагировать на тревожные звонки или наоборот — отвечают на них чересчур громко. В силу самых разнообразных причин возникают расстройства физиологических механизмов. Регуляторные системы начинают работать вхолостую или невпопад.

Разумеется, не всегда причиной или началом такого разлада является подбугорье. Нередко «поломка пружины» происходит в нервных окончаниях, в клетках органов, в периферических взаимодействиях. Но рано или поздно, первично или вторично, расстройство регуляторных механизмов захватывает и систему ядер подбугорья. Развивается особое состояние, которое мы когда-то назвали «болезнью гомеостаза». В ответ на возбуждение одной системы (предположим, симпатической) организм уже не отвечает мобилизацией парасимпатических ресурсов. Так, избыток адреналина или норадреналина в крови не компенсируется их усиленным распадом и выведением из организма. Не происходит и накопления ацетилхолина. А образование в тканях и поступление в кровь больших количеств гистамина не сопровождается повышением активности разрушающих его ферментов. Иногда первоначальное возбуждение симпатической системы вызывает такой несоразмерный ответ со стороны системы парасимпатической, что возникает состояние избыточной компенсации, сопровождающейся полным расстройством регуляторных систем.

Однажды был поставлен такой опыт. Собаке ввели в передние и задние отделы гипоталамической области электроды и попеременно пропускали через них слабый электрический ток. При этом возбуждались клетки симпатических и парасимпатических ядер. Регуляция физиологических процессов оказалась полностью нарушенной. Нормальный ритм взаимно компенсирующих и уравновешивающих влияний превратился в лихорадочную пляску возбуждений и торможений. Внутренние органы и сосуды получали быстро сменяющие друг друга противоречивые импульсы. В стремительном темпе повышалось и падало кровяное давление, суживались и расширялись сосуды, учащались и замедлялись сердечные сокращения, усиливалось и прекращалось выделение желудочного сока. Состав крови, ее биологические свойства были резко изменены. Через один-два дня у животного развилась типичная картина язвенной болезни желудка.

Природа ставит иногда сходные эксперименты и на человеке. Конечно, не такие грубые и прямолинейные. Но расстройство регуляции физиологических процессов, нарушение закона обратной связи, потеря способности компенсировать, уравновешивать сдвиги в составе и свойствах внутренней среды само по себе является болезнью, хотя вовсе не обязательно проявляется заметными нарушениями деятельности органов или физиологических систем.

При длительных раздражениях или при хронической боли деятельность гипоталамуса может в той или иной степени перестроиться. В первой стадии, когда звучит болевой набат и сигнал бедствия требует напряжения всех защитных сил, гипоталамус мобилизует комплексную вегетативную систему на устранение болевого раздражителя и восстановление нормальных взаимоотношений в организме. Но на каком-то, втором или третьем этапе мобилизующие и компенсирующие механизмы гипоталамуса нередко разлаживаются. Постепенно, по мере нарастания болевых раздражений, его деятельность приобретает хаотический характер. Тогда-то возникают тяжелые нарушения всей вегетативно-гуморально-гормональной регуляции. Это стадия болевых эффектов.

Но, хотя роль гипоталамуса в изощренном сложном хозяйстве организма чрезвычайно велика, он отнюдь не автономен и не самостоятелен в своих действиях. Подбугорье находится под постоянным и неослабным контролем вышележащих центров головного мозга, с которыми связано и анатомически, и функционально. К таким центрам относится лимбическая система головного мозга. Многие исследователи считают, что гипоталамус является лишь частью этой системы, поскольку через него она реализует свои направляющие и регулирующие влияния.

Свое название лимбическая система получила от латинского слова limbus (край, кайма). Она как бы окружает, опоясывает ствол мозга. Раньше ее относили к обонятельному мозгу, т.е. к той области центральной нервной системы, где разветвляются волокна, идущие от обонятельной луковицы. В настоящее время к лимбическим структурам относят ряд отделов мозга, не связанных с обонятельными долями. В лимбику включают гиппокамп, миндалевидный комплекс, сосковидные ядра, передние ядра зрительных бугров, поясную извилину. Все эти нервные образования объединяют иногда под названием «круга Пейпеза», по фамилии изучившего их деятельность ученого (рис. 16).

Уже давно известно, что лимбическая система тесно связана с деятельностью внутренних (висцеральных) органов. Поэтому ее нередко, хотя и без достаточных оснований, называют «висцеральным» мозгом.

Раздражение электрическим током различных отделов лимбики у кошек, обезьян, кроликов вызывает множество эмоциональных реакций — психическое возбуждение, ярость, агрессию, гнев, страх, тревогу и т.д. Описаны своеобразные сдвиги в поведении животных (бегство, прыганье, стремление спрятаться или, наоборот, перейти в атаку). С лимбическими структурами связаны и эмоциональные переживания, возникающие при длительной боли. Важное значение имеют они в формировании половой деятельности животных и, по-видимому, также человека. Все больше и больше приводится доказательств, что в миндалевидном комплексе находятся центры половых функций.

Активация лимбических образований мозга путем введения через микроканюли разнообразных химических веществ ведет к повышению кровяного давления, изменению дыхания, усилению деятельности желудочно-кишечного тракта, сокращению матки и т.д.

Рис. 16. Круг Пейпеза (лимбическая область коры заштрихована)

1 — переднее ядро зрительных бугров, 2 — сосцевидное тело подбугорья, 3 — поясная извилина, 4 — гиппокамп

В условиях нормальной жизнедеятельности животных и человека лимбическая система получает информацию из всех внутренних органов. Это позволяет ей через гипоталамус и периферический вегетативный аппарат регулировать и координировать физиологические процессы в организме.

Рис. 17 Лимбическая система (схема). Внутренняя поверхность полушария мозга

1 — переднее ядро зрительного бугра, 2 — верхнее срединное ядро, 3 — срединный центр, 4 — сосцевидное ядро подбугорья, 5 — подбугорье, 6 — обонятельный мозг, 7 — миндалевидное ядро, 8 — обонятельная луковица, 9 — мозговой ствол, 10 — нога гиппокампа, 11 — крючковидная извилина

Однако нельзя считать, что лимбическая система самостоятельна и независима. Во всей своей деятельности она неразрывно связана с выше- и нижележащими отделами головного и спинного мозга (рис. 17).

За последние годы накопилось много интересных данных, показывающих, что состояние и деятельность гипоталамуса и вегетативной нервной системы в значительной мере зависят от ретикулярной формации головного мозга. Неспецифические влияния, поступающие от ретикулярной формации к коре головного мозга, частично проходят через гипоталамическую область. Французские исследователи Делл и Бонвалле показали, что адреналин и норадреналин стимулируют адренергические элементы ретикулярной формации. Определенные участки гипоталамуса и ретикулярной формации богаты норадреналином. Вся система нервной передачи построена в них на выделении этого медиатора. Можно думать, что здесь формируются симпатические реакции. Другие отделы гипоталамуса и ретикулярной формации особенно чувствительны к ацетилхолину и серотонину.

Уже выше говорилось о том, что ретикулярная формация повышает бдительность коры больших полушарий мозга и усиливает ее готовность к действию при различных раздражениях, поступающих из внешнего мира. Эта функция ретикулярной формации непосредственно связана с состоянием задних ядер гипоталамуса, через которые проходят потоки влияний, активирующих кору мозга.

Роль ретикулярной формации в организации болевого ощущения описана выше. Совместно с лимбической системой, гипоталамусом, вегетативным аппаратом участвует она в сложном комплексе физиологических и биохимических процессов, возникающих в организме при боли.

Какова же роль коры головного мозга — этого высшего, «правительственного» отдела нервной системы? Каково ее значение в осуществлении вегетативных функций организма?

Как ни странно, на этот вопрос пока еще нет точного ответа. До сих пор не доказано существование высших регулирующих вегетативных центров в коре. Раздражение коры электрическим током или химическими веществами, как правило, не вызывает специфических реакций со стороны внутренних органов.

Швейцарский физиолог Моннье утверждает, что в двигательной зоне и лобных долях коры можно обнаружить вегетативные центры. Он приводит такой пример. Когда мы выполняем тонкую ювелирную работу пальцами, в них усиливается кровообращение, расширяются сосуды, обостряется чувствительность рецепторов. Это происходит потому, что в двигательной зоне коры, где формируется двигательный акт, находятся вегетативные центры, клетки которых возбуждаются синхронно с двигательными. Точно так же приспособление дыхательных движений к речи происходит благодаря наличию в речевых центрах элементов вегетативной нервной системы.

Кора осуществляет высший, постоянный контроль над деятельностью всех подкорковых элементов головного мозга. Она направляет и регулирует основную массу физиологических и биохимических реакций, осуществляемых и гипоталамусом, и лимбической системой, и ретикулярной формацией. В свою очередь все эти нервные образования оказывают определенное влияние на кору. Взаимодействие по вертикали от низших центров к высшим и от высших к низшим создает своеобразные кольцевые ритмы во всех отделах центральной нервной системы.

Длительная болевая импульсация нарушает эту координированную деятельность расположенных на различных этажах нервных ансамблей. При этом могут возникать разнообразные расстройства, характер которых зависит от многих причин, требующих в каждом отдельном случае специального анализа.


Hosted by uCoz